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Perturbative analysis of the interaction of a 954 kink with 
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Abstract. Dynamicsofa kinkin the  model with additionaltermsaccounting for localized 
or Spatially random inhomogeneities are analysed by means of the perturbation theory. 
First, conditions for the capture of the free kink by a local defect are found. Next, emission 
of radiation by the kink colliding with the local defect, and collision-induced generation 
of the kink's shape (intemal) mode and the defect-sustained impurity mode are considered. 
Finally, the non-dissipative braking of the moving kink in a randomly inhomogeneous 
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1. lntroduetion 

The subject of this work is dynamics of the kink in the perturbed 
has the following general form: 

model, which 

(1) 

where 01 is the dissipative constant, f is the external DC driving field, and the two last 
terms take account of a spatial inhomogeneity of the system. It is well known [l-31 
that the c $ ~  model describes the displacive phase transition in quasi-io ferroelectrics. 
In this context, it arises as the continuum limit of a discrete system of interacting 
particles with the 4* on-site potential. This discrete model is also of some interest in 
itself, see e.g. [4]. In terms of these models, the perturbing terms on the right-hand 
side of equation (1) find their natural interpretation: f is the DC electric field applied 
to the system, 01 is a phenomenological lossy constant, and the coefficients q ( x )  and 
E ~ ( x )  take account of the inhomogeneity of the, respectively, strength of the local 
on-site potential and mass of the particles. Physically, these inhomogeneities can be 
produced by imperfections of the underlying lattice or by impurities. 

Finally, equation (1) with the inhomogeneity term corresponding to a localized 
defect (impurity) 

4,, - 4xx - 4 + 43 = -4, -f+ E I ( X ) ( 4  - 43) - &2(X)4rt 

.,(x) = ES(X) E2 = 0 (2) 

is an interesting model system for studying the kink-impurity interaction [SI. 
The kink solution to the unperturbed equation (1) is 

+k = U tanh((x - r ) / J 2 ( 1 -  V 2 ) )  (3) 
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where U = *1 is the kink's polarity, V is its volocity and z = Vt is the coordinate of 
its centre. The objective of the present work is to study, by means of the perturbation 
theory, the interaction of the kink with the local inhomogeneity corresponding to 
equation (2), or with that corresponding to 

E , = 0  E 1 =  &8(X). (4) 
I will also consider motion of the kink through the random inhomogeneous medium 
described by equation (1) with the random functions subject to the Gaussian 
correlations, i.e. 

h b ) ) = O  ( E , ( X ) E I (  X'))= E 2 6 ( X  - X'). (5 )  
It is well known [6] that the unperturbed +4 equation, linearized on the background 

of the kink solution, gives rise to the continuous spectrum of delocalized radiation 
modes, and to two localized modes constituting the discrete spectrum. One of the 
localized modes is the usual Goldstone one, related to the translational invariance of 
the q54 model, while the second mode describes small-amplitude internal shape oscilla- 
tions of the kink. In the absence of the kink, the +4 equation linearized on the 
background of the localized defect (equations (2) or (4)) admits the so-called impurity 
mode (see e.g. [4]). Interaction of the kink with ihe localized or random inhomogeneities 
gives rise to excitation of the shape and radiation modes, as well as of the impurity mode. 

In section 2, the interaction of the kink with the local inhomogeneity (2) is briefly 
considered in the adiabatic approximation, i.e. neglecting the excitation of the radiation, 
shape and impurity modes. Following the lines of the similar analysis for the sine- 
Gordon ( S G )  model [7,8], the threshold (maximum) values of the drive parameter f 
in equation (1) admitting the capture of the kink by the inhomogeneity are found for 
positive and negative E. 

In section 3, the radiation losses of the kink scattered by the local defect (2) or (4) 
are investigated. The analysis is bised on the Lagrangian technique employed earlier 
[9,10] to analyse the excitation of the shape mode in the kink-antikink collision. The 
total emitted energy is calculated. 

Section 4 is devoted to excitation of the shape and impurity modes in the kink-defect 
collision. This problem is of especial interest, as it is qualitatively different from the 
analysis developed earlier for the SG kink (see the review paper [ll]). The SG kink 
has no shape mode, while its adiabatic interaction with local defects, as well as the 
collision-induced emission of radiation, have been studied in detail [ l l ] .  As for the 
shape mode, it exists in the SO model with a local defect, but the excitation of 
the shape mode has not previously been analysed (see also section 6). At the end of 
section 4, radiative and dissipative dampings of the excited shape and impurity modes 
are briefly considered. 

In section 5 ,  excitation of the shape mode of the kink moving in the randomly 
inhomogeneous medium described by equation (5) is studied. It is demonstrated that 
this is the shape mode which gives a dominant contribution to the non-dissipative 
braking of the kink in the inhomogeneous medium. 

Finally, in the section 6 some new problems, which are related to those considered 
in the present work, are briefly discussed. 

2. The adiabatic kink-impurity interaction 

It is well known [3] that the kink (3) may be treated as a classical relativistic particle 
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with the mass m =$ subject to the action of the driving and friction forces, 

Fdr= 2uJ (6) 
Fr,= - ( 2 d / 3 ) a V ( l -  V2)-"2, (7) 

In the homogeneous system, the driven kink moves at the equilibrium velocity V, 
determined by the equation Fdr+ FcT = 0 [3,7]: 

(8) 

l )ZJ ,="  (9) 

Vo(l - Vi)-'/'= (Z/&)w( f / a ) .  

The local inhomogeneity (2) corresponds to the additional term 

in the full Hamiltonian of the q54 model. Inserting the kink's waveform (3) into equation 
(9), one finds the effective potential of the kink-impurity interaction [5]: 

U ( z )  = ! E  sech4(z/&). (10) 
Thus, the local defect (2) repels or attracts the kink (irrespective of its polarity) if E 

is, respectively, positive or negative. In the former case, it is straightforward to find 
the threshold (maximum) valuef,,, of f a t  which the free kink coming across the defect 
will be captured by it. Following the lines of [7], one should equate the kinetic energy 
of the free 'non-relativistic' kink, Ek = 3 Vi, to the height U, - & E  of the potential barrier 
(10). -&? eve.tc.! r.sc!! is 

(11) 2 
f:hr= ( 9 / 3 2 ) ~ u  . 

This result is valid under the condition that the force generated by the effective potential 
(10) must be much larger than the friction and driving forces at z 2 s  1 [7]: 

E >> a2. (12) 
In the opposite case ( E  < O), when the local defect attracts the kink, one can find 

the value Jhr following the lines of [ X I .  Under the same condition (12), the threshold 
trajectory may be approximated by that corresponding to the motion of the particle 
in the potential (10) with zero velocity at infinity: 

(13) 

The energy dissipated by the kink on the trajectory (13) can be calculated as follows: 

dz 
- = m s e c h 2 ( z / d ) .  
d t  

t m  t m  

F,dz;.-(2&/3)a z d z = 2 a m  
E - L I-, 

where equation (7) has been used. Finally, equating the energy loss .Edi,, to the kinetic 
energy, one finds 

f;hr= a 3 e .  (14) 
Note that, by virtue of the underlying condition (12). the threshold value (11) for the 
repulsive defect is much larger than that (14) for the attractive one. This fact is well 
known in the analysis of the similar problem in the sc model [SI.  

As concerns the local defect described by equation (4). the corresponding energy 
of the kink-defect interaction is (cf equation (10)) 

Ei,,=&V2(1- V2)-' sech2(z/&). (15) 
Since the interaction energy (15) vanishes when V=O, this defect cannot capture the 
kink. 
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3. Emission of radiation in the kink-impurity collision 

Using the results of [6], in the linear approximation one can represent the radiation 
wavefield on the background of the kink in the following form: 

'$b', t')-'$k(X') 
tm 

- d k ' [ 8 ~ ( 2 +  k")(  1 +2k'2)]-1'2 
- L 

x{[3 tanh2(x'/fi)-3fiik'tanh(x'/d2-(l+2k'2)] 

x exp[i(k'x'-d%?t')]b(k') +cc} (16) 
where & i s  the kink waveform, b( k ' )  are the complex spectralamplitudes of the emitted 
radiation, and the coordinate x', the time 1' and the wavenumber k pertain to the 
reference frame moving together with the kink. If the b4 equation contains a small 
perturbing term P[+] which can be deduced from an additional term in the full 
Lagrangian (e.g. P['$] = E,(x)(+ -'$3) - E ~ ( x ) + , ?  in equation ( l ) ) ,  the radiation 
wavefield (16) gives rise to the following terms in the full Lagrangian: 

+m 

x [T(2+ V2)(  1 +2k'2)]-''2 

x {[3 tanh2(x' /f i)  + 3 f i  ik' tanh(x ' / f i )  - ( l  + 2 k ' 2 ) ]  

x e x p [ - i ( k ' x ' - d % ? t ' ) ] b * ( k ' ) + c c )  (17) 

where the overdot stands for the time derivative. The first term in equation (17) ,  
quadratic in the spectral amplitudes, comes from the unperturbed part of the 
Lagrangian (evidently, the term of the unperturbed Lagrangian linear in the spectral 
amplitudes makes no contribution to the action of the system). Varying the Lagrangian 
( 1 7 )  in b(k') yields the following linearized equations of motion for the spectral 
amplitudes: 

b ( k ' )  =- (2+ .V2)-'[r(1 +2k'2)]-1'2 exp(i-f) 

dx' P[ '$k(X')I  

i 
2 

x J '-dx'P['$,(x')][3 t a n h 2 ( x ' / f i ) + 3 f i i k '  t a n h ( x ' / d )  

-(1+2k")] exp(-ik'x'). (18) 

Assuming no radiation prior to the collision, one can define the final values [113 of 
the collision-generated amplitudes as follows: 

-m 

im 

[b(k')],,= dt '  b ( k ' ) .  (19) 

The basic physical characteristic of the emitted radiation is the spectral density 
8 ( k ' )  of the radiation energy. Considering the linearized '$4 equation, one can readily 
find that, in the lowest approximation, 

-m 

% ( k ) ' )  = f i ( 2 +  k'2)lbfin(k')12. (20) 
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Finally, one can define the total energy of the emitted radiation [ll], 
+m 

E,,= g(k’) dk’. (21) I_, 
In  the reference frame moving together with the kink, the perturbing term 

corresponding to equation (2) takes the form 

P = E J 1 - - V Z ( X + V t ) ( $ - + ’ ) .  (22) 

Inserting equation (22) into equation (18) and performing the subsequent calculations 
according to equations (19) and (20), one finds that, in the most interesting ‘ultrarela- 
tivistic’ limiting case, 1 - V2<c 1, the spectral density of the emitted energy is 

% ( k ’ ) = ( v / 1 6 ) ~ ~ ( 1 -  V2)5(k’)4/sinh2(v(1 - V2)k’/2fi) .  (23) 

In the laboratory reference frame, the wavenumber k and the frequency o -J1+ k2 
are related to those k’ and o ‘ - m  by the Lorentz transformation: 

(24) 

The Lorentz transformation of the energy and momentum (the momentum spectral 
density is P(k’)  = (k’/m’)%(k’)) demonstrates that the energy spectral density is the 
Lorentz scalar (i.e. it is invariant with respect to the Lorentz transformation). ‘I’hus, 
substituting equation (24) for k’ in equation (23) yields the expression for the energy 
spectral density in the laboratory reference frame. Finally, integrating it over dk (cf 
equation (21)) gives the total emitted energy in the laboratory reference frame, 

- 

k‘ = ( k  - V w ) / m -  (k-  V m ) / - .  

E,,=(2/15)~~-. (25) 

Note that the analysis of the interaction of the SG kink with the local defect described 
by the term &S(X) sin $ in the perturbed SG equation demonstrates the same depen- 
dence, Erad--, in the limit 1 - V2+0 [ll]. 

In the case of the local defect corresponding to equation (4). the difference from 
the previous expressions for the energy spectral density and the total emitted energy 
amounts to the additional factor V4( 1 - V2)-*. In particular, in the limit 1 - V’+ 0 the 
total emitted energy diverges - ( I  - v ~ ! - ~ ’ ~ ~  cf equation ( 2 5 ) :  

4. Excitation of the impurity and shape modes 

4.1. The impurity mode 

ii is siraighiforward io find that the iocai inhomogeneity (2) supports the impurity 
mode which, in the linear approximation, has the form 

(26 )  $- ++ 1 = B exp(iwf+ ~ l x l ) + c c  

where B is the small amplitude, and the frequency 

o = m = f i - E ’ / Z f i .  (27) 

The impurity mode ( 2 6 )  exists only at & i o ,  when the impurity is attractive (see 
equation (10)). Note that only in this case is the mode (26) localized (exp(&lxl)+O at 
Ixl+a). 
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Assuming that the coefficient E in front of the local inhomogeneity is small, one 
expects the collision of the kink with the inhomogeneity to excite the impurity mode 
with a sufficiently small ampltitude. This process is governed by the perturbed 44 
equation, the left-hand side of which is linearized in $: 

$0 -*xx-$+34& = ES(X)(+k-#,:). (28) 

The right-hand side of equation (28); where only the contribution from the unperturbed 
kink is retained, plays the role of the drive (source) exciting the impurity mode. Next, 
to derive an evolution equation for the amplitude B of the impurity mode, one should 
mutiply equation ( 2 8 )  by exp(alx1) (see equation ( 2 6 ) )  and integrate it over d x  from 
-a to +a. The important circumstance is that, since /el is small, the eigenmode ( 2 6 )  
is weakly localized: its characteristic size - I E ~ - '  is much larger than the proper size 
of the kink, which is of order one i n  the notation adopted. Therefore, when integrating 
over dx, one may in the crudest approximation substitute the coefficients 34: in front 
of the last term on the left-hand side of equation ( 2 8 )  by the constant coefficient equal 
to 3 (evidently, this substitution is irrelevant for the right-hand side of equation (28)). 
Afterthis, onecan readilyderive the following evolution equationfortheimpurity-mode 
amplitude B: 

Finally, integrating equation (29), one finds the final value (cf equation (19)) of the 
amplitude: 

The energy Ej, of the impurity mode ( 2 6 )  can he readily found in the lowest approxi- 
mation: 

. -  
Ei, = J dx(f'Y:+q2) =4B:,/1~1. (31) 

In the case of the local inhomogeneity (4). the impurity mode exists provided E is 

$, 4 f 1 = B eiur-slXl + c  C (32) 

where the frequency w is the same as in equation ( 2 7 ) .  Note that, according to equation 
(15), positive E corresponds to the repulsive defect. Thus, in case (4) the impurity 
mode is supported by the repulsive impurity, in contrast to case ( 2 ) ,  when the supporting 
inhomogeneity must be attractive. The calculation of the final value of the amplitude 
B of the impurity mode (32) is quite similar to that performed above for case (2), and 
the eventual expression for Bin differs by the additional multiplier V4(l - V2)-2. In 
particular, equation (31) tells, us with regard to the additional multiplier, that in the 
limit 1 - V2+ 0 the energy of the excited impurity mode takes the finite value 4 2 .  Note 
that, in the general case, the energy expended on the generation of the impurity mode 
is -Iel3, while the radiation energy losses are - E *  according to equation ( 2 5 ) .  Thus, 
the impurity-mode losses remain negligible in comparison with the radiation ones as 
long as the parameter E remains small. 

-m 

positive, and it has the form (cf equation ( 2 6 ) )  



Perturbatiue analysis 761 

4.2. The shape mode 

If the shape mode is excited, the disturbed kink can be represented in the form [6]  

+(x’, t’)-+dx’) = (&/2) sech(x’/fi) tanh(x’/fi)[e-‘”’ b , ( t ’ ) + c c ]  (33) 
(cf equation (16)). The parts of the full Lagrangian of the perturbed q54 model, linear 
and quadratic in the shape-mode amplitude b,(t’) (cf equation (17)), are 

+m I 
Lahaps = --@(bobX - C C ) + J 5 / 1 (  ~ / 2 )  4 

x sech(x’/&) tanh(x’/&)(e’*”’ b,* +cc).  (34) 
Varying the expression (34) in bo yields the following evolution equation (cf equation 
(18)): 

+m 

bo = i f i  E dx’ P [  &(x‘)] sech(x‘/&) tanh(x’/f i )  eiJJTi”. (35) 

The final value of the shape-mode amplitude can be defined exactly as in equation (19): 

( b J f i n = I  -m dt’b,. (36) 

Note that this way of investigating the excitation of the shape mode of the kink 
colliding with the local defect is essentially similar to the approach to the same problem 
for the kink-antikink collision developed in [9] (see also [ I O ] )  and based on the 
collective-coordinate technique. 

It is straightforward to express the energy of the shape oscillations in terms of the 
amplitude: 

t m  

ErhaDC = (9/1O)l(b0)~.1~. (37) 
For the local defect corresponding to equation (2), the calculations based on equations 
(35) and (36) yield 

I (bo)f i~~2=(E/4)2v-’a(3+ V2)’(1 - V2)3 sech2(?r&/2V). (38) 

For the defect corresponding to equation (4), expression (38) should be multiplied by 
V4(1 - Comparing equation (38) with equation (25), one concludes that, in the 
limiting case 1 - V2+ 0, the energy expended on the excitation of the shape mode 
becomes negligible in comparison with the radiation losses. 

4.3. The damping of the shape and impurity modes 

The shape oscillations are subject to radiative damping. In fact, this effect has already 
been considered in [ 9 ] .  The radiative damping is accounted for by the term in the 
equation quadratic in the shape-oscillation amplitude bo.  Indeed, the quadratic term 
gives rise to the shape oscillations at the double frequency 2 0 . ~ ~ ~ ~  = 2(m) = &, 
which couples with the radiation wavenumbers 

k=*J(20sh,, , ) ’ -2-*2.  

W =  [2~3”~?r/s inh~(&?r)]b; .  (39) 

The calculations based on the general evolution equation (18) and on expression (20) 
for the energy spectral density yield the corresponding energy emission rate 
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Expression (39) is quartic in the amplitude bo because the energy emission rate is 
quadratic in the emission amplitude, and, as was said above, the latter is quadratic 
in bo. 

The energy-balance equation 

determines the rate of the radiative damping of the shape oscillations. Inserting 
equations (37) and (39) into equation (40), one sees that the damping law takes the form 

bi - f-' (41) 

i.e. the damping is non-exponential. For comparison, the dissipative term in equation 
(1) gives rise to the exponential damping law 

bi- exp( -( lOJ~/9)at). (42) 

To conclude this section, let us note that the impurity mode is also subject to 
radiative and dissipative damping. The corresponding energy-balance equations take 
the following form: 

for the cases of radiative and dissipative dampings, respectively (recall that B is the 
amplitude of the impurity mode (26)). 

5. Excitation of the shape mode in the randomly inhomogeneous medium 

Let us consider free motion of the kink in the medium described by equation (5). The 
random inhomogeneity gives rise to excitation of the shape mode and, simultaneously, 

losses of energy expended on generation of the shape oscillations and radiation waves. 
At the final stage of the braking, the shape-mode losses play a dominant role. The rate 
W of the transfer of energy into the shape mode can be obtained from equation (37): 

to emission of rzdi+?n. n .e  mest imeres!ing issue is br2king nf the kink due t!? the 

d 
W - -  E,,,,,=Z Re(b,bz). (43) d t  

The evolution equation (35) in the reference frame moving together with the kink is 

The formal integral of equation (44) is 

bo(f') = i d l - m d r " l - m  dx"EI((x"+ V r " ) / m )  tanh2(x"/&) 
I' +m 

x secV(x"/\/i) e i J Z r " .  (45) 
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Inserting equations (44) and (45) into equation (43) and averaging the result according 
to equation (9, one can obtain the following expression in the limiting case V<< 1, 
corresponding to the final stage of the braking: 

(46) 
The energy-balance equation for the kink is (recall that, in the notation adopted, the 
mass of the kink is m =4/3): 

~ +&2”-8 e-n45/v 

Inserting equation (46) into equation (47) yields the asymptotic law of motion of the 
kink: 

V ( t ) = ~ d / I n ( ~ ’ r ) .  (48) 

Formally, the integral z (  t )  = V( t)dt corresponding to equation (48) diverges at f +a, 
so that the kink does not stop at any finite value of z. However, the kink will actually 
be captured by a local potential well, induced by the random inhomogeneity, when 
V2(t) diminishes to a value -E;  cf the similar situation in the analysis of the radiative 
braking of the SG kink moving through a lattice of local inhomogeneities [ l l ] .  

As for the radiation losses, in the case V<< 1 the energy emission rate contains the 
factor e x p ( - 2 ~ / V ) ,  hence it may be neglected in comparison with expression (46). 
Note that the radiation losses of the SG kink in the randomly inhomogeneous medium 
were first studied in [12]. 

6. Conclusion 

The problems considered in the present work can be generalized in different directions. 
For instance, one can consider the SG model with the local defect, 

+,,-+x,,+sinh +=-&S(x)sin+.  (49) 

Model (49) has a number of physical applications. For example, it describes a long 
Josephson junction with an installed microresistor ( E  < O )  or microshort ( E > O )  [7]. 
Interaction of the SG kink with the local defect has been studied in detail [ I  11, except 
for the generation of the impurity mode. In the linear approximation, the impurity 
mode is (cf equation (26)) 

(50)  + = B eiul+(r/2)lrl+CC 

where o = -= 1 - ~ ’ / 8  (cf equation (27)). The impurity mode ( S O )  exists only 
in the case E <0,  ie.. when the local defect attracts the kink [7]. Note that exactly the 
same situation has been encountered above in the 4’ model based on equations ( 1 )  
and (2). The calculation of the collision-induced amplitude of the impurity mode is 
quite similar to that performed in section 4.1. The final result is (cf equation (30)) 

En”= -(iv/2)z2(1 - V’) V-’sech(?r-/2V) 

and the energy of the impurity mode (50) is (cf equation (31)) 
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Apart from the kink, the unperturbed SG equation has the soliton solution in the 
form of the so-called breather: 

+br= 4 tan-'[tan p cos(cos ( t  - v x ) / J i 7 )  
x sech(sin p (x  - V t ) / m ) ]  

where p takes the values O<p< r / 2 .  The collision of the breather with the local 
defect gives rise to emission of radiation, the total emitted energy being 

unless the breather's internal frequency obr = cos p is close to the resonant value mbr = f . 
In the latter case, the tri le frequency 3ob, gets close to the edge oo= 1 of the radiation 
spectrum w ( k )  = + 1 + k 2  It is known that in this case the radiation effects are essentially 
stronger than far from the resonance [ 113. The final estimate for the emitted energy 
in this case is (cf equation ( 5 2 ) )  Erad- E ~ /  V3'2, where it is implied that the velocity V 
is sufficiently small; the emitted energy is concentrated in the spectral region k 2 s  V. 

An interesting problem is to consider the interaction of the kink with the impurity 
and shape modes in the case when the kink's kinetic energy is of the same order of 
magnitude as the energies of the excited modes. In this case, the interaction can give 
rise to rich dynamics. In particular, the regions of the values of the initial velocity of 
the kink, corresponding to the capture, transmission and reflection of the kink colliding 
with the local defect, can alternate in a complicated way [5, 13,141. 
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